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Overview

� Physics goals of future colliders: NLC, LHC, µµ … 
� Spontaneous symmetry breaking
� Search for new physics
� More precise measurements of EW 
parameters

� Need for multi-leg, higher-loop radiative 
corrections which can be included in Monte Carlo 
simulations



b � s (l+ l-)

� Experimentally, B physics is in high gear:

� Leading order is 1-loop penguin diagrams:



� Existing experimental data:

� Theoretically, there are two perturbative windows 
separated by the c cbar resonances:



Penguin.V3.exe

� It would be nice to have a program to calculate the 
2-loop corrections for any combination of 
kinematic parameters with a mouse click:



� QCD radiative corrections are available
in the low s region by expansion techniques

H.H. Asatryan, H.M. Asatryan, 
C.   Greub, and M. Walker

� Bremsstrahlung is available

A.G., T. Hurth, G. Isidori, Y.-P. Yao
Asatryan et al. 



� The virtual correction diagrams can be organized 
in five gauge invariant subsets:



Two-loop radiative corrections
� Special cases of 2-loop diagrams

� Zero mass diagrams: QCD, QED
� 2-loop Bhabha scattering

Z. Bern, L. Dixon, A. G.
� Light-by-light scattering

Z. Bern, A. De Freitas, L. Dixon, A. G.,  
and H.C. Wong

� All QCD 2 � 2 scattering processes
Z. Bern, L. Dixon, D. A. Kosower
C. Anastasiou, N. Glover, C. Oleari, 

and M.E. Tejeda-Yeomans

� Vacuum diagrams are always 
expressible in terms of Spence 
functions. Complete solution due to
J.J. van der Bij and M. Veltman (1984).



� In the general kinematic case lead to 
extremely complicated and often unknown 
functions
e.g. the 2-loop sunset diagram

is expressed in terms of Lauricella (1888) 
functions (generalized hypergeometric 
functions)                 �������������� �	


� => Hybrid analytic-numerical     
approach
A. G., J.J. van der Bij, Y.-P. Yao

Caveat: I.R. singularities need to be extracted 
analytically before numerical integration



� Analytical 
tensor 
reduction

� Numerical 
integration

� Final 
product

� Feynman parameters
� Dirac algebra
� Tensor decomposition
� Recursion relations
� Set of 10 scalar functions hi

� => complicated formulae

� Automatic singularity finding
� Automatic complex 

integration path 
� High precision numerical 

integration algorithm for hi

� Final multi-dimensional 
integration by using an 
adaptative deterministic 
integration algorithm

� => grid of integration points 
covering the whole relevant 
kinematic range

� Fast interpolation program 
that can be integrated into 
MC simulations

� => fast 2-loop evaluation



Tensor decomposition
� Any 2-loop diagram looks like this:

� This can always be expressed as an integral over 
sunset-type functions by introducing a number of 
Feynman parameters:



� After tensor reduction this reduces to a set of 10 
scalar integrals:



� The UV divergences can be isolated as poles in 
ε = n - 4:



� The UV finite parts can be reduced to four building 
blocks and further integrated numerically:



� Efficient numerical integration



� After a 1-dimensional numerical integration, the hifunctions look like this:

� The remaining Feynman parameter integrations are 
performed numerically by using the same 
techniques.



� Caveat: IR singularities need to be separated 
before numerical integration!

E.g.  IR separation in Z � bbar



Tested on many other physical processes
� B physics A.G., T. Hurth, G. Isidori, Y.-P. Yao

� Full next-to-leading order QCD corrections to
� b � s γ
� b � s (l+l-)

� Top decay A.G. and Y.-P. Yao
� QCD corrections to the top quark width

� Z ->b bar                                   A.G. and Y.-P. Yaoindirect top mass measurement at LEP and SLC
� Higgs physics A.G. and J.J. van der Bij

� Higgs decay into fermions: H � t tbar
� main heavy Higgs decay mode: H � WW, ZZ
� muon collider Higgs resonance shape:

µµ � H � WW, ZZ
� LHC gluon fusion �resonance shape:

gg � H � WW, ZZ



Computational challenges

� To be useful for comparing with the 
experiments, our results must cover three 
variables:
� Charm mass
� Dilepton invariant mass
� Subtraction scale

� Grid containing 3 X 3 X 38 X 2 independent 
points calculated at 0.1% accuracy 
Intermediary points obtained by 
interpolation

� Huge computational problem

� Used the CERN Linux cluster:
approx. 3 days running on 33 processors



� In the low dilepton invariant mass limit, we have 
a strong test of our results based on Asatryan et 
al. mass and momentum expansion results



� For some graphs, the mass/momentum expansion 
works better…



� … for other diagrams it works worse .



Numerical results valid over the whole kinematic 
range of the dilepton spectrum:



Four form factors: f71, f72, f91, f92





Conclusions
� Massive 2-loop radiative corrections can 
be performed reliably with our methods, 
provided enough computing power.

� Caveat: IR singularities need to be 
treated separately. 

� It would be useful to fully integrate 
Feynman diagram generation programs 
(Qgraf, Feynarts…) with the numerical 
2-loop algorithm.

� A completely automated interface of 
various components (diagram generation, 
computer algebra, numerical integration) 
will boost productivity and reliability.


